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LETTER TO THE EDITOR 

A molecular dynamics study of long-time correlations in a 
model of structural phase transitions-comparison with a 
mode-coupling approximation 
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tInstitut fur Theoretisehe Physik, lkchnische Universitiit Dresden, Mommsenstrasse 13, 
0-3027 Dresden, Federal Republic of Germany 
meoretische Physik, Universitsl des Saarlandes 66M) Saarbmcken, Federal Republic of 
Germany 

Received 24 May 1991 

Abstract. Predictions of a modecoupling approximation (MU) are compared with 
m o l d a r  dynamical simulations of onedimensional +'-lattice syvlems with diUerent 
oat-neighbour inleraction svengths In the long-time behaviour we find complete dis- 
agreement for weak coupling, whereas some predictions of the MCA are qualitatively 
veri6ed in the slmng-coupling case, indicating diUerent sources for long-time mrrefa- 
lions (local phase space separation or soliton-like solutions of non-linear differential 
equations). 

Up to now it has been an open question whether or not the long-time behaviour of 
the displacement-displacment correlation function S of p e m k i t e  crystals causing 
a narrow central peak (0) in the van Hove scattering function near structural phase 
transitions (SPT) [l] can be described using a decoupling procedure in the relaxation 
kernel of S. This decoupling method (factorization) leads to mode-couplmg equations 
for S, Le. the relaxation kernel becomes a power of S itself [Z]. The approximation 
will be defined as a modecoupling approximation (MCA) due to the special character 
of the resulting equations (see below). 

The first step towards answering this question is to define a microscopically moti- 
vated model. For many purposes it s e e m  reasonable to choose the Q4-lattice model, 
since most qualitative features of SPT of peromkites are reproduced by it [I] and 
there exist ob initio calculations clearly demonstrating the multiwell character of the 
lattice potential (of the high-symmetry phase) [3, 41. 

Using the MCA, Aksenov et ol [Z] obtained long-time correlations (LE) E S(t -+ 
CO) near the SPT of the CP'-model. Moreover they found a transition temperature 
Tg separating phases with and without LTC (T, > T,, T, SPT temperature). This 
additional transition is well understood within schematic models of liquid-glass tran- 
sitions [SI. Gotze. et ol ([SI and references therein) solved the slow dynamics of such a 
schematic model near the singularity point Tg, obtaining scaling laws and well-defined 
relaxation properties (depending on the model analysed). Hence, it should to be very 
interesting to investigate the applicability of the mode-coupling theory of liquid-glass 
transitions to a lattice model describing a sm. 

The result may strongly depend on the interaction range. In [6] the one- 
component @'-lattice model was studied for infinite-range interactions. In this case 
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the LTC appear due to phase space separation of this non-ergodic system for N -+ 00 
(N integrals of motion, N is the number of unit cells). A comparison of these exact 
results with a MCA yields good agreement (except for at low temperatures) for zero 
decoupling times, i.e. for static correlations, and complete disagreement for infinite 
dewupling times (in which we are interested) [7,8]. 

However, in the case of finite-range interaction it is an open question under 
which conditions and for what reasons LTC may appear. In a great number of molec- 
ular dynamics (MD) studies of the @‘-model with next-neighbour interaction (“I) the 
long-time behaviour of the model was analysed ([9-14) and references therein). How- 
ever, there has been no systematic study of the applicability of MCA. So our aim was 
to obtain such information from MD simulations of d=l, Zdimensional @4-systems 
with NNI. 

In this letter we present results on onedimensional systems. The lack of a 
SPT in these systems (T, = 0, [U]) does not seem to be important since quasi- 
one-dimensional systems exhibit a SPT and will also exhibit the properties discussed 
below. 

We mention here calculations [16] made in studying LTC caused by defects. Such 
defeas are also good candidates for producing the CP in perovskites. However, they 
are not of central interest here. 

We will briefly describe the model and the main results of McA,and then give a 
short explanation of OUT simulation technique and of the physical quantities calculated. 
The main results are then presented and discussed. 

We start by studying the scalar @*-lattice model with NNI: 

H = (3 - 1,: + -X: 1 + , f ( X l  1 - X I - , ) ’ )  . 
2 2  4 I 

X I  and PI are canonically conjugate particle displacements and momenta. Index 1 
runs over all unit cells. f is the harmonic interaction constant of nearest neighbours. 
AU variables are dimensionless (see [q). This model exhibits a SPT of second order 
at a temperature T, . For d = 1 one has, however, T, = 0 [l, 15). 

The mode-coupling approach starts with the Laplace transform 

S,(z) = + i w d t  e’”‘S,(t) I m ( r )  > 0 with A, = Ce’q‘AI  
I 

of the displacementdisplacement correlation function 

Slk(t)  = ( X I ( ~ ) X , ( O ) )  (3) 

where the brackets denote thermodynamic averaging for a canonical ensemble. 
Using standard Green function equations of motion [17] one obtains 

s , (z )  = (X*),/Iz - (T/(X*),)/Iz - (l/T)Mq(z)ll (4) 

where the structure of the relawtion k e m l  M,(z) can be found elsewhere [Z, 7, 81. 
Using simple factorization procedures within M,(z)  one derives the ‘mode-coupling 
approximation’: 

M d t )  =-&,(t). (5) 
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The parameter 7 is usually assumed to be equal to 6 [2]. However, the scenario 
described below remains qualitatively unchanged if y is varied (cf [I). 

The equations (4) and (5) can now be solved selfconsistently. Using the results 
of a corresponding schematic F,-model [SI one can reach the following conclusions. 

(1) There can exist non-vanishing long-time correlations 

(2) If they exist then there exists some temperature TB such that for 

T >  T8 L,, = o  
T <  Tg L,, $ 0 .  

(3) The dependence on Llk(T)  is discontinuous at T8: 

L,,(T - Tg - 0 )  # 0 .  (8) 

(4) Near T8 (T < Tg) the dependence on L, , (T)  is given by 

(5) Near T8 (IT - TgI/T8 =g 1) one obtains p- and a-relaxation properties of S 
(see [SI). The relaxation process we are interested in (L,,) freezes in at Tg, Le. its 
time scale 

(10) 1/2ot l /Zb tT' - t o / [ ( T -  T8)/T81 

diverges as T8 is reached (to is the relevant microscopic time scale and a > 0,  b > 0 
are model parameters). 

The numerical solution derived in [2] under some additional assumptions agrees 
with 1-4 whereas properly 5 was not under study for model (1). 

We now discuss the molecular dynamics technique. In order to obtain ther- 
modynamic properties of model (l)--especially the time dependence of correlation 
function (3)-we performed m simulations following [ll]. The Langevin equations 
with Gaussdistnbuted stochastic forces F,(t)  

%,(t) = -aH/ax, - rp, + q(t) (11) 

/F,(t)F,(t + 7 )  dt = 2Tr6,,6(r) (12) 

are solved numerically. The friction constant r must obey the inequality 

character&tic microscopic time =g 1 /r =g simulation period. 

We used a Verlet algorithm [ll]  and the parameters 

time iteration step, At 0.05 r lo-, 
probability of a random pulse = 0.05 
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The equations of motion were solved under periodic boundary conditions. The system 
sizes under study were N =  100,500,2033,4000. 

The Fourier transformation of Xl(i)  is obtained using a fast Fourier transform 
[IS]. We obtain Sl l (wk)  at IO' w,-points. A smoothing of the spectra does not 
change the area below S(w). The final resolution of a low-frequency excitation in 
w-space is 2 x Since the LE in (6) can be descriied as the integral over the 
corresponding b(w)-peak in S(w), we define L in our computer simulations as the 
integrated intensity of the central peak component (if it exists and is clearly separated 
from the dynamical part of the spectrum) of S(w): 

Each run was started with Gaussdistributed momenta PI ( ( l / N )  Cl Pf = T) and 
zero displacements. The tint simulation period Te4 = 2000 was used to reach 
equilibrium with a large req = 0.03. The subsequent simulation time 7'. = 9830.4 
with parameters (13) was used to obtain the time evolution of our system. During this 
time Ts the deviation from equilibrium was checked by calculating the difference of 
the the integrated averaged squared momentum and the MD temperature T occurring 

TO obtain the Fourier spectrum of the correlation function S l l ( t )  we use the 
in (12). 

discrete Wiener-KhinEin theorem [IS]: 

T.lAt-1 

I ( A ~  j) .-(2xi/T.)L A t  jx Sff(W,) = IX,(WL)I* X d W d  = A t  
j = O  

I T ,  ,..., - l , O , l , . . . ,  -- - 27rk k = 1 T, W k  = - T,  2 At 2 At 

Besides (14) we also calculated the following thermodynamic quantities: the mean 
square displacements (Xt),  the mean cluster length (I) (mean length of chain parts 
with equal sign of particle displacements), the mean constant sign time ( 7 )  of one 
particle displacement and the FWHM (full width at half maximum) of the central peak 
component in Sll(w).  

We tested our simulation technique by using different potentials, e.g. harmonic 
systems, and found no disagreement with exact results. The main argument supporting 
our method is, however, the simulation of a system with infinite-range interaction 
and vanishing interaction strength (because of the use of reduced variables, this 
corresponds to simply letting f = 0 in (I)). For such systems exact results for 
(Xf) and L are known [6].  The data are compared in figure 1. They show perfect 
agreement for (X!) and good (deviations < 10 per cent) agreement for L. Thus we 
expect all our numerical procedures to be applicable to the more interesting case of 
NNI. 

We first discuss the qualitative features of the S(w)-spectra for different ranges 
of T and f. For weak coupling f (s: 1 the spectra exhibit a well defined central peak 
component and a resonant part (figure Z(a)). This holds for all temperatures except 
for at the high-T limit. The height of the CP decreases drastically with increasing T 
whereas the FWHM depends only slightly on T. For coupling constants f 2 1 the 
low-T limit of S ( w )  looks similar to the weakly coupled case. However, an increase 



Leua to the Editor 

I 3 

7065 

7- 
4Ef4 

OEC 
-2 0 0 0 2  

FREQUENCY 

For high enough T the CP component disappears in all cases (figure 2(c)). krying 
the interaction strength f for constant temperature, the FWHM shows a maximum 
at some intermediate value of f and vanishes for vanishing f (this corresponds to 
the infinite-interaction case) but surprisingly also for high enough f. Except the 
mean cluster length, all other thermodynamic quantities also exhibit a maximum (or 
minimum) at the same intermediate value of f. This suggests different origins for 
the LX in the case f + 0 (phase space separation) and in the strongIy coupled case 
f > 1 (non-hear dynamic behaviour). 
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Figurr 3. (Xf) versus temperature for diffeerent 
coupling strengths f .  'Ifiangl-N=SM; sbm- 
N=UKIO. 
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Figure 4. L(T) for f=O.l and f=4. Squares- 
N=100: shx-N=SW; triangl-N=uK)O (the 
lines are only guides tor the eye). 
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The mean square displacements as functions of T are shown in figure 3. For weak 
coupling we obtain nearly the Same Tdependence including a minimum at T w 0.2 
as in the case of infinite-range interaction (cf figure 1). With increasing coupling 
strength the minimum becomes deeper and shifts to higher temperatures in contrast 
to what is found in the in6nite-range interaction case [6]. 

The calculated integral CP intensities of S(u) (according to (14)) are shown in 
figure 4. For weak coupling, f Q 1, the L(T)-curve is similar to the infinite-range 
interaction result (figure l), indicating that also for finite, but weak NNI the MCA is 
unable to explain the temperature dependence of the long-time correlations [7] (no 
plateau in L ( T )  + no indication of Tg). Increasing the coupling strength changes the 
situation, however. First of all the curvature of L(T)  seems to change its sign. Thus 
one should expect an L( T)dependence with some plateau. We are unable, however, 
to determine L(T)  at arbitrarily high temperatures due to the above-mentioned 
coalescence of both the CP and the resonant parts of S(u)  with increasing T. 

Flgum 5. Inverse mean constant sign time l/(r) 
vcrsus temperarm for different coupling strengths 
f. l l iangl-N=W, stars-N=40M). ltianglcs-N-UXY); rtars-N-4WO. 

Flgure 6. Inverse mean cluster length 1 / ( 1 )  MI- 

sus temperarue for diffeenl coupling strengths f, 

?b decide whether or not some predictions of M a  become true for strong cou- 
pling, we plot the inverse mean constant sign time 1 / ( ~ )  and the inverse mean 
cluster length 1/(1) as functions of T (figures 5, 6). We clearly see that for strong 
coupling there exists a crossover temperature separating temperature regions with 
different T-dependences of ( T )  and (1 ) .  The dependences on 1/ (1 )  and l / ( r )  in 
the crossover region are smooth and a fictitious break in the plots occurs ody  due 
to the chosen scale of the ordinate. For decreasing coupling this crossover region 
shifts to lower temperatures. It is interesting to notice that no crossover is seen in the 
Tdependence of the mean square displacements and thus of the local susceptibilities. 
No Ndependence of our results was found. Moreover we calculated distributions 
of cluster lengths and constant sign times for N=100, ..., 4OOO and found identical 
distribution functions. Thus size effects can be excluded. 

Now let us discuss the results. In the case of weak “I a 1D Q4-system behaves 
similarly to a @“-model with infinite-range interaction not only with respect to the 
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mean square displacements ((X,?) = J'_'," S(w) d w )  but also with respect to the 
integrated CP intensity. Thus we conclude, in the same manner as in [7l, that in this 
case MCA does not work for large times in (5) and predictions of MCA fail. 

The suong-coupling case exhibits new features: first the L(T)-dependence 
changes its curvature thus making a sharper crossover to small L-values with in- 
creasing temperature possible. Secondly we see a crossover in the temperature de- 
pendences of (I) and (.). This observed crossover temperature is deEnitely below the 
temperature range in which the L(T)crossover is expected. This is not surprising in 
MCA: assuming the exhtence of Tp one expects a-relaxation processes for T 2 T' 
at large times [5] (see property 5, above). This slow adymmics is not resolved in 
the CP by our technique. Thus an evaluation of the L(T)-curves obtained by our 
simulation method should, indeed, yield values for Tg 'hat are too high . 'R, avoid 
this overestimation one should study the extreme long-tune behaviour of S(d). 

Summarizing, we conclude that LTC appear in a ID @*-model due to phase space 
separation for weak NNI coupling while they seem to have a different origin (e.g. 
soliton-like solutions of the continuum limit [19]) in the case of strong coupling. 
Consequently MCA predictions fail in the weak-coupling case while they seem to be 
more relevant in the strong-coupling case. 

This work was supported by the Bundesministerium fur innerdeutsche Beziehungen 
I B 2-51034 (85-90/91). WO of us (SF and JS) thank K H Weyrich for helpful 
discussions and colleagues from Saarbriicken for their kind support. 
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